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Appendix A
Face Detection
To detect individual faces, we extracted seven seconds of still images at 15 fps as training data and used the Joint Face Detection
and Alignment using Multi-Task Cascaded Convolutional Network (MTCNN). This framework employs a cascaded architecture
with three stages of deep convolutional neural networks (CNN) to predict face and landmark locations in a coarse-to-fine
manner. In the first stage, candidate windows possibly containing faces are produced using a fully convolutional network called
Proposal Network (P-Net) (Figure S3)1. Each candidate window has four coordinates – top left coordinates, height, and width.
Ground truth bounding boxes have the same coordinate format as well. The objective function for bounding box regression
performed on these candidate windows is the Euclidean loss between the corresponding coordinates of a candidate window and
its nearest ground truth bounding box. The objective is to minimize this Euclidean loss, given for a sample xi as in equation (1).
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Here,ŷbox
i is the output regression coordinate obtained from the network and ybox

i is the ground-truth coordinate. After performing
bounding box regression, the highly overlapping candidates are merged using non-maximum suppression (NMS)2. NMS is
performed by sorting the bounding boxes by their score, and greedily selecting the highest scoring boxes and removing the
boxes that overlap with the already selected boxes more than a given threshold, 0.7 in the first stage. In the second stage, all
candidates selected in the first stage are provided to another convolutional network, Refine Network (R-Net) (Figure S3). R-Net
further rejects candidate windows not containing faces, performs bounding box regression, and merges the NMS candidates
with a threshold of 0.7. Finally, the Output Network (O-Net) produces the final bounding box (Figure S3). MTCNN is trained
for bounding box regression by posing its objective function as a regression problem. While extracting the candidate windows
during testing, a window is selected on the basis of the threshold given for Intersection over Union (IoU) score, calculated as in
equation (2).
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Here, Ao
i is the area of overlap between the ith ground-truth bounding box and the ith detected bounding box, and Au

i is the
area of union between the ith ground-truth bounding box and the ith detected bounding box. If the IoUi is above the given
threshold for a candidate window, the window is selected for the next stage. The three-stage threshold values used for selecting
the candidate windows were 0.6, 0.7 and 0.9 respectively. The face thumbnails obtained from this framework have a size of
160*160 pixels. These thumbnails are provided to the face recognition framework as input.

Face Recognition
FaceNet is a deep CNN model that extracts facial features in terms of 128-D Euclidean (L2) embeddings using a triplet-based
loss function3. The input to FaceNet model is the set of aligned images obtained from MTCNN. The network is trained such
that the squared L2 distances in the embedding space directly correspond to face similarity. These embedding vectors can then
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be used as feature vectors for a classification model. We used the FaceNet model pre-trained on a subset of the MS-celeb-1M
dataset which includes about 10 million images of 100,000 celebrities4, which had an accuracy of 0.99 on the Labeled Faces
in the Wild (LFW) dataset5. The pre-trained model was used to extract features from patient thumbnails and to calculate
the corresponding L2 embeddings for our training images. These embeddings are then used to train a linear Support Vector
Machine (SVM) for classification, on a fixed number of images (n=100, ~7 seconds of video) of a patient, along with the same
number of negative examples of non-patients. The tolerance value for stopping criterion was set to 0.001.

Appendix B
Posture Classification
While our recorded patient frames contain examples of functional status activities such as walking, sitting in bed, or sitting
on chair, these activities are interspersed in an imbalanced and sparse manner throughout the video clips. To remedy this
problem, besides patient data, we additionally recorded 90 minutes of video containing scripted functional activities performed
by nonpatients in the same ICU rooms. Out of the 150,621 video frames, 74,924 frames are scripted, and 75,697 frames are
taken based on actual ICU patients’ videos. The initial size of each frame was 1680x1050, which was reduced to 368x654
to accommodate the memory. We used a multi-person pose estimation model6 to localize anatomical key-points of joints
and limbs. Most algorithms are single-person estimators7–9, such that they first detect each person and then estimate the
location of joints and limbs. The single-person approach suffers from early commitment problem when multiple people are
in close proximity; if an incorrect detection is made initially, there is no point of return as this approach tracks the initial
detection. Due to the small size of hospital rooms and the presence of multiple people (patient, doctors, nurses, visitors), we
used the multi-person approach6. It also allows us to decouple the runtime complexity from the number of people for real-time
implementations. The multi-person pose estimation was performed using the real-time multi-person 2D pose estimation with
part affinity fields. The part affinity fields are 2D vector fields that contain information about the location and direction of limbs
with respect to body joints. Our pose detection model consists of two branches of a sequential prediction process, where one
branch detects the locations of joints, and the other branch detects the association of those body joints, as limbs. Both branches
consist of Fully Convolutional Neural networks (FCN)10. A convolutional network, consisting of first 10 layers of VGG-1911,
is used to generate a set of feature maps F. These feature maps are used as input to each branch of the first stage of the model.
The first branch outputs a set of detection confidence maps S1 = ρ1(F) and the second branch outputs a set of part affinity
fields L1 = φ 1(F) where S1 and φ 1 are the two branches of CNNs at the first stage. In the following stage, the outputs from the
branches in the previous stage and the original image features F are combined and provided as inputs to the two branches of the
next stage, for further refinement. The confidence maps and part affinity fields for the subsequent stages are calculated as in
equation (3) and equation (4), respectively6.

St = ρ
t(F,St−1,Lt−1),∀t ≥ 2 (3)

Lt = φ
t(F,St−1,Lt−1),∀t ≥ 2 (4)

This process is followed for the t stages of the network. We have used three stages of the network in our model.
This model has been pre-trained on the MPII Human Pose dataset for 144,000 iterations. It contains over 40K activities

with annotated body joints12. The final model provided a state-of-the-art mean average precision of 0.79 on MPII dataset.
We used the lengths of body limbs and their relative angles as features for the classification model. We used estimated poses
to detect the four functional activities. We got the best results with K-Nearest Neighbors for classification, with Minkowski
distance metric and value of K equal to one.

During the poselet detection step, sometimes a few anatomical key-points were not detected. This led to the problem of
missing values for some features in the data that were provided to the classification model. Most algorithms are not immune
to missing values. Several methods can be used to impute missing values, including mean, median, mode, or amputation via
k-nearest neighbors (k-NN)13. The K nearest neighbors are found based on the distance with the remaining features between
the different samples. Each missing value of a feature was imputed by the weighted average of the same feature of the K
nearest neighbors, with a K value of three. The resulting poselets were then used to train and test the classification algorithm
on our dataset. We used 80% of our data for training, and 20% for testing. The ICU training data included 74,924 frames
from the scripted dataset and 75,697 frames from the actual ICU patients. Test data comprised only actual patient data. The
hyper-parameters of the classification algorithms were fine-tuned using GridSearchCV with five-fold cross-validation. Pipeline
of posture recognition model is shown in Figure 6.
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Ini tial Cohor t: 
22 patients consented

Withdrawal from study: 2 patient excluded
Transfer  from ICU: 1 patient excluded

ICU stay < 1 complete day: 2 patients excluded

ICU stay per iod (del i r ious):
4 patients

Total ICU days: 46
CAM+ ICU days: 30
CAM- ICU days: 15

Unassessable days: 1

ICU stay per iod (Non-deli r ious):
8 patients

Total ICU days: 135
CAM+ ICU days: 11
CAM- ICU days: 120

Unassessable days: 4

ICU stay per iod (patients w ith del i r ious 
and non-deli r ious days):

5 patients
Total ICU days: 112
CAM+ ICU days: 19
CAM- ICU days: 87

Unassessable days: 6

Accelerometer  data:
 10 days
(100 %)

Video recording data:
2 days
(20 %)

Audio r ecording 
data:

7 days
 (70 %)

Light r ecording data:
6 days
(60 %)

Accelerometer  data:
23 days
(92 %)

Video recording data:
15 days
(60 %)

Audio r ecording data:
23 days
(92 %)

Light r ecording data:
6 days
(24 %)

Accelerometer  data:
23 days
(88 %)

Video recording data:
25 days
(96 %)

Audio r ecording data:
20 days
(77 %)

Light r ecording data:
5 days
(19 %)

Enrol lment per iod:
Total ICU days: 10
CAM+ ICU days: 10
CAM- ICU days: 0

Unassessable days: 0

Enrol lment per iod:
Total ICU days: 25
CAM+ ICU days: 0
CAM- ICU days: 25

Unassessable days: 0

Enrol lment per iod:
Total ICU days: 26
CAM+ ICU days: 11
CAM- ICU days: 15

Unassessable days: 2

Figure S1. Cohort recruitment diagram. Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) was used to
assess patients for delirium. If a patient had any positive CAM-ICU screening for a day, that day was identified as CAM+
(delirious). Days with no positive CAM-ICU screening, but which had negative CAM-ICU screening were identified as CAM-
(Non-delirious). Days that the patient could not be assessed because of Richmond Agitation-Sedation Scale score of less than
-3 were identified as unassessable days. Patients were divided into three groups: delirious patients (patients who were delirious
through their enrollment period), non-delirious patients (patients who were not delirious through their enrollment period), and
patients who had both delirious and non-delirious days. CAM: confusion Assessment Method, ICU: Intensive Care Unit.
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Figure S2. Sleep quality outcomes, patient self-reports using Freedman Sleep Questionnaire. The parameters range from 1 to
10, with 1 being poor and 10 being excellent for the first five criteria. For overall daytime sleepiness, 1 is unable to stay awake,
10 is fully alert and awake. For environment and nursing interventions disruptiveness variables, 1 is no disruption, 10 is
significant disruption. *: p-value less than 0.05. Number of delirium nights: 9. Number of non-delirium nights: 43.
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Figure S3. Architecture of face detection network. a) Proposal network (P-Net) produces candidate windows possibly
containing faces, b) Refine network (R-Net) rejects candidate windows not containing faces and performs bounding box
regression, c) Output network (O-Net) produces the final bounding box. Conv: Convolutional, MP: Max pooling, FC: Fully
Connected layer, FM: Feature Maps and NMS: Non-Maximum Suppression. The numbers denote the kernel size in Conv and
MP layers. The numbers for FM denote the height, width and depth of the FM. The step-size for each Conv layer is one and for
each MP layer is two.
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Facial Expression AUs
Happiness 6+12
Sadness 1+4+15
Surprise 1+2+5+26
Fear 1+2+4+5+7+20+26
Anger 4+5+7+23
Disgust 9+15+16
Contempt R12A+R14A
Pain 4+6||7+9||10+43

Table S1. Action Units (AUs) for each facial expression.

Facial Action Unit Name Facial Action Unit number Binary/intensity coding
Inner brow raiser AU1 Intensity
Outer brow raiser AU2 Intensity
Brow lowerer AU4 Intensity/Binary
Upper lip raiser AU5 Intensity
Cheek raiser AU6 Intensity
Nose wrinkler AU9 Intensity
Lip corner puller AU12 Intensity/Binary
Dimpler AU14 Intensity
Lip corner depressor AU15 Intensity/Binary
Chin raiser AU17 Intensity
Lip stretcher AU20 Intensity
Lip tightener AU23 Binary
Lips part AU25 Intensity
Lip suck AU28 Binary
Blink AU45 Binary

Table S2. Action Units (AUs) detected using the OpenFace toolbox.

Predicted label
Lying Sitting on chair Standing

True label
Lying 94.45 0.79 4.76
Sitting on chair 1.73 92.89 5.38
Standing 4.23 11.97 83.80

Table S3. Confusion matrix showing the model performance for the four postures -lying, sitting in bed, sitting on chair, and
standing- using K-Nearest Neighbor model.
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Variable, median (IQR) Non-delirious patient days
(N=15)

Delirious patient days
(N=3)

p value

Mean activity count 24-hour 25.6 (13.6, 125.9) 4.8 (3.2, 15.2) 0.10
Standard deviation of activity count 24-hour 106.6 (84.5, 346.1) 81.6 (52, 95) 0.20
Mean activity count daytime 33.9 (11.8, 126.9) 6.7 (4.5, 11.9) 0.08
Standard deviation of activity count daytime 139.1 (71.6, 370.1) 54.3 (43, 84.8) 0.08
Mean of activity count nighttime 21.8 (8.9, 66.1) 0 (0, 19.8) 0.15
Standard deviation of activity count nighttime 103.4 (58.1, 296.2) 0 (0 , 70.9) 0.12
M10 a 30081.5 (13732.6, 147613.8) 6841.1 (4636.5, 13373.4) 0.06
Time of M10 (hour) 317 (162, 548) 413 (241.5, 545.5) 0.82
L5 b 927.5 (593.4, 2789.8) 0 (0, 252.7) 0.04
Time of L5 (hour) 7 (8, 18) 1 (1,4) 0.15
Relative amplitude 0.9 (0.9, 1) 1 (0.97, 1) 0.06
RMSSD c 117.6 (103.1, 360.7) 85.6 (56.7, 102.8) 0.20
RMSSD/SD d 1.1 (1, 1.2) 1.1 (1.1, 1.2) 0.57
Number of immobile minutes daytime 589 (498.5, 670.5) 683 (636.5, 697) 0.16
Number of immobile minutes nighttime 632 (601.5, 673) 720 (605, 720) 0.29
a Activity intensity of 10-hour window with highest sum of activity intensity.
b Activity intensity of 5-hour window with lowest sum of activity intensity.
c Root Mean Square of Sequential Differences.
d Root Mean Square of Sequential Differences/Standard Deviation.

Table S4. Movement features for the arm, comparing between the delirious and non-delirious groups.

Variable, median (IQR) Non-delirious patient days
(N=15)

Delirious patient days
(N=6)

p value

Mean activity count 24-hour 8 (7.1, 27.1) 16.6 (8.5, 53.0) 0.46
Standard deviation of activity count 24-hour 61.4 (52.3, 91.2) 57.7 (46.2, 138.8) 0.91
Mean activity count daytime 8.9 (6.6, 28.3) 17.3 (8.7, 57.9) 0.51
Standard deviation of activity count daytime 61.7 (57.2, 98.7) 60.4 (53.9, 130.5) 0.85
Mean of activity count nighttime 9.8 (5.3, 22.4) 22.4 (8.1, 46.8) 0.51
Standard deviation of activity count nighttime 64.6 (42.2, 80.2) 61.8 (32.0, 146.4) 0.91
M10 a 8094.1 (6817.2, 27183.4) 18702.3 (10107.9, 44256.8) 0.23
Time of M10 (hour) 6 (2.5, 8.5) 9 (3.2, 13.2) 0.56
L5 b 544.4 (287.6, 2067.1) 1226.5 (555.5, 8623.2) 0.29
Time of L5 (hour) 13 (1.5, 16) 10 (5, 18) 0.69
Relative amplitude 0.9 (0.9, 0.9) 0.8 (0.7, 0.9) 0.15
RMSSD c 75.6 (66.6, 109.9) 60.4 (50.1, 162.4) 0.56
RMSSD/SD d 1.2 (1.1, 1.3) 1.1 (1.1, 1.2) 0.39
Number of immobile minutes daytime 650 (529.5, 686) 601.0 (429.5, 648.7) 0.35
Number of immobile minutes nighttime 673 (544.5, 690.5) 542 (523.5, 644.5) 0.20
a Activity intensity of 10-hour window with highest sum of activity intensity.
b Activity intensity of 5-hour window with lowest sum of activity intensity.
c Root Mean Square of Sequential Differences.
d Root Mean Square of Sequential Differences/Standard Deviation.

Table S5. Movement features for the ankle, comparing between the delirious and non-delirious groups.
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Sources at 1m Sound Pressure Sound Pressure Level
(reference sound pressure = 0 dB)

Threshold of pain 20 Pa 120 dB
Pneumatic hammer 2 Pa 100 dB
Street traffic 0.2 Pa 80 dB
Talking 0.02 Pa 60 dB
Library 0.002 Pa 40 dB
TV studio 0.0002 Pa 20 dB
Threshold of hearing 0.00002 Pa 0 dB

Table S6. Examples of sound pressure and sound pressure levels.
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